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1.1 BACKGROUND 

Designs and analyses for soil structures using limit equilibrium methods (LEM) 

have been conducted as engineering practices for more than 200 years. Results of slope 

stability analyses using limit equilibrium methods are represented by the safety factor 

(Fs) of the slope, defined as the ratio between the shear strength and the shear stress of 

the material that forms the slip surface. Although the value of Fs has long been used as 

an indicator for the slope stability status, it has intrinsic shortcomings that hinder 

insightful slope stability designs and analyses: (1) Displacements of the slope and/or 

shear displacements along the slip surface are unknown; (2) The definition of Fs is 

based on a major assumption, i.e., a unique Fs along the slip surface. Therefore, the 

value of Fs is somewhat a ‘semi-quantitative’ indicator, rather than a quantitative one. 

The judgement on the safety status of the slope based on values of Fs is neither 

straightforward nor accurate and is largely dependent on empiricism.  

To remediate the above shortcomings of LEM-based slope stability analysis, a 

Force-equilibrium-based Finite Displacement Method (FFDM) is developed (Huang, 

2013). In the FFDM, the Fellenius’ method, the Bishop’s method, the Janbu’s method, 

the Spencer’s method and the multi-wedge method are modified to accommodate the 

new theory. In this report (FFDM Software Development Series 1), features of FFDM 

including its advantages and disadvantages are highlighted. In addition, three essential 

components that constitute the framework of FFDM are also introduced in Sections 1.4 

through 1.6. These fundamental components include: (1) Stress-displacement 

constitutive law of soils; (2) Force and/or moment equilibrium for the entire sliding 

mass.; (3) Displacement compatibility of sliding soil mass.  
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1.2 ADVANTAGES OF FFDM 

The FFDM for reinforced slopes has the following features that are distinct from 

the existing stability analysis methods:  

(1) Providing a vertical settlement at the crest as well as shear displacements along the 

critical failure surface of the analyzed slope. A vertical settlement of the slope is 

often deemed as an important displacement-based indicator of the slope. 

(2) Providing local displacement-based and stress-based safety factors along the 

failure surface instead of a lumped safety factor for the entire slip surface. 

(3) Providing slope displacements with little additional time and effort, as compared 

to conventional slope stability methods. The computer time needed in calculating 

slope displacements using non-linear (hyperbolic) stress-displacement 

relationships constitutive laws is no more than that needed in a conventional limit 

equilibrium calculation for a constant value of safety factor. 

(4) The shear stress-displacement relationship in FFDM is like that used in the discrete 

element method (DEM) in which stress-displacement relationships are used to 

obtain normal and shear spring constants under small displacement conditions, 

except that the stress-displacement relationship used in FFDM covers relatively 

large shear displacement conditions.  

(5) Adopting the notion of incremental slope displacements or cumulative slope 

displacements between two different internal and/or external loading states.  

(6) FFDM is equally applicable to unreinforced and reinforced slopes. In the case of 

reinforced slopes, the mobilized reinforcement force is a part of analytical output. 

This is not the case in conventional LEM-based analyses. 
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1.3 LIMITATIONS OF FFDM 

The FFDM has the following limitations: 

(1) Potential failure surfaces must be prescribed in the FFDM analysis as in 

conventional LEM analyses. Possible shapes of failure surfaces include straight 

lines, bi-linear wedges, multi-wedges, circles, logarithmic spirals, and a 

combination of the above-mentioned ones. A group of potential failure surfaces are 

used in a trial-and-error manner to search for a critical surface associated with a 

maximum slope displacement in the FFDM analysis. 

(2) Slope displacements can be calculated at the cost of three more input soil parameters 

required by the hyperbolic stress-displacement constitutive law. They are the initial 

shear stiffness number (K), the stress-dependency exponent (n) and the peak-to-

asymptote strength ratio (Rf). These parameters can be obtained via calibrations of 

the slope displacements during the initial phase of field monitoring, direct shear 

tests, or empirical equations. 
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1.4 STRESS-DISPLACEMENT CONSTITUTIVE LAW 

The following hyperbolic equation as schematically shown in Fig. 1.4.1 is used for 

the normalized shear stress (τ/τf) vs. shear displacement (Δ) relationship along the 

potential failure surface (Duncan and Chang, 1970; Huang, 2013): 
𝜏

𝜏௙
=

∆

𝑎 + 𝑏 ∙ ∆
             (1 − 4 − 1) 

𝑎 =
𝜏௙

𝑘௜௡௜௧௜௔௟
                   (1 − 4 − 2) 

𝑏 = 𝑅௙                            (1 − 4 − 3) 

𝑅௙ =
𝜏௙

𝜏௨௟௧
                       (1 − 4 − 4) 

kinitial: initial shear stiffness of soils 

τult: asymptote strength at infinite displacement 

τf:: shear strength of soil based on Mohr-Coulomb failure criterion 

Rf: asymptote strength ratio (= τf / τult) 

 

 

Figure 1.4.1   A hyperbolic normalized stress and shear displacement relationship 

  

The shear strength of soils (τf) is described based on Mohr-Coulomb failure criterion: 

𝜏௙ = 𝑐 + 𝜎௡
ᇱ ∙ tan𝜑                        (1 − 4 − 5)  

σn
’: Effective normal pressures 

c: cohesion intercept 

φ: Internal friction angle of soils 

Note that Eq. (1-4-1) is the inverse of local safety factor Fs at the base of a slice 
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(or a soil wedge): 

𝐹௦ =
𝜏௙

𝜏
                                         (1 − 4 − 6) 

The initial shear stiffness can be expressed as a power function (Duncan and Chang, 

1970) of effective normal pressure (σn’) on the failure surface: 

𝑘௜௡௜௧௜௔௟ = 𝐾 ∙ 𝐺 ቆ
𝜎ᇱ

௡

𝑃௔
ቇ

௡

             (1 − 4 − 7) 

K: initial shear stiffness number (a non-dimensional material constant) 

Pa: atmospheric pressure (= 101.3 kPa) 

G: reference shear stiffness (= 101.3 kPa/m) 

n: pressure dependency exponent 

The stress-displacement constitutive law expressed by Eqs. 1-4-1 through 1-4-7 are 

substantiated by a study on various types of soils based on medium-to-large scale direct 

shear test results and a curve-fitting technique. Details of the tests and curve-fitting will 

be reported in a forthcoming series of reports.  

 

  



 

FFDM Development Series 1                       7                                2024-10-04 

1.5 FORCE AND MOMENT EQUILIBRIA  

This section briefly describes force and moment equilibria considered various 

types of analyses. Details of formulations will be given in a forthcoming series of 

reports. Three types of force and moment equilibrium are adopted in slope stability 

formulations for a potential sliding mass with slices: 

1. For a circular failure surface as shown in Fig. 1.5.1, Fellenius’ method (Fellenius, 

1936), and Bishop’s method (Bishop, 1955) fall in this category. In these methods, 

the vertical (or normal to  

the slice base) force equilibrium and the over-all moment equilibrium of the circular 

sliding mass are formulated. 

 

 
Fig. 1.5.1 A potential failure mass confined by a circular failure surface 

 

2. For a non-circular failure surface as shown in Fig. 1.5.2, the rigorous Janbu’s 

method (Janbu, 1973), and Spencer’s method (Spencer, 1973) fall in this category. 

In these methods, force equilibrium (both in vertical and horizontal directions) and 

moment equilibrium for every slice in the sliding mass are formulated. In the 

simplified Janbu’s method, however, only force equilibrium in vertical and 

horizontal directions are formulated. 
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Fig. 1.5.2 Body and reactional forces in a sliced non-circular failure mass 

3. For a wedge-like failure surface as shown in Fig. 1.5.3, the Multi-wedge method 

(Huang, et al., 2003) and the simplified Janbu’s method fall in this category. In 

these methods, only force equilibrium in vertical and horizontal directions are 

formulated.  

 

 

Fig. 1.5.3 Schematic wedge-like failure mass 
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1.6 DISPLACEMENT COMPATIBILITY  

A hodograph (or displacement diagram) that satisfies displacement compatibility 

(Atkinson, 1981), schematically shown in Fig. 1.5.3(a) and 1.5.3(b), yields:  

∆ଶ= ∆ଵ ∙
cos(𝛼ଵ − 2)

cos(2 − 𝛼ଶ)
=

∆଴

sin(𝛼ଵ − )
 ∙   

cos(𝛼ଵ − 2)

cos(2 − 𝛼ଶ)
        (1 − 6 − 1) 

where  is the angle of the dilatancy of soils. 

  For the case of i >3: 

∆௜= ∆௜ିଵ ∙
cos(𝛼௜ିଵ − 2)

cos(2 − 𝛼௜)

=   
∆଴

sin(𝛼ଵ − )
 ∙   

cos(𝛼ଵ − 2)

cos(2 − 𝛼ଶ)
∙

cos(𝛼ଶ − 2)

cos(2 − 𝛼ଷ)
∙∙∙∙∙∙∙∙∙∙∙∙

∙
cos(𝛼௜ିଵ − 2)

cos(2 − 𝛼௜)
                                                (1 − 6 − 2)  

Note that in Eq. (1-6-2),  

cos(2 − 𝛼ଶ) = cos(𝛼ଶ − 2)                  (1 − 6 − 3)          

Therefore, a general expression for Δi is obtained as: 

∆௜= ∆଴ ∙ 𝑓(𝛼௜)                                             (1 − 6 − 4) 

𝑓(𝛼௜) =   
1

sin(𝛼ଵ − )
 ∙

cos(𝛼ଵ − 2)

cos(2 − 𝛼௜)
    (1 − 6 − 5) 


 12


 12

22
2




 

Fig. 1.6.1 Displacement compatibility of adjacent slices: 

 (a) vectors of shear displacement; (b) displacement diagram 
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Figure 1.6.2(a) schematically shows a potential sliding mass under a constant 

volume (i.e., an angle of dilatancy Ψ= 0) state. Vectors of shear displacements (Δ1, ---, 

Δ7) at the slice base and the slice interface are also shown. Displacement diagram (or 

Hodograph) for this case is shown in Fig. 1.6.2(b).  

 

 

Figure 1.6.2 A constant-volume (Ψ=0) sliding mass with (a) Displacement vectors 

 at the base of slice; (b) Hodograph of the sliding mass  
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Figure 1.6.3(a) schematically shows the case of dilative state of the sliding mass, 

namely Ψ > 0, the vector of shear displacement at the base of the slice has an angle of 

Ψ with the base of slice. A hodograph for the case of Ψ> 0 is shown in Fig. 1.6.3(b) 

which indicates that for a sliding mass under Ψ > 0 condition, shear displacements along 

the potential sliding surface increase towards the toe of the slope. 

 
 

 

 

Figure 1.6.3 A constant-volume (Ψ >0) sliding mass with (a) Displacement vectors 

 at the base of slice; (b) Hodograph of the sliding mass  
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Figure 1.6.4(a) schematically shows the case of dilation (or expansion) of the 

sliding mass, namely Ψ< 0, the vector of shear displacement at the base of the slice has 

an angle of dilation (Ψ) with the base of slice. A hodograph for the case of Ψ< 0 is 

shown in Fig. 1.6.4(b).  

 

 

 

Figure 1.6.4 A constant-volume (Ψ< 0) sliding mass with (a) Displacement vectors 

 at the base of slice; (b) Hodograph of the sliding mass  
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1.7 DISPLACEMENT INCREMENT 

In calculating slope displacements induced by external and internal condition 

changes (e.g., loading, water table, or pore water pressure variations), two values of i , 

namely, a slope displacement prior to the event  a
i  and that after the event  b

i , can 

be calculated. The increment of displacement for slice i, induced by the stress change 

is schematically shown in Fig. 1.7.1, and is defined as: 

 

∆௜= ∆௜
௕ − ∆௜

௔                           (1 − 7 − 1)   

 

 

Fig. 1.7.1 Possible shear stress and displacement increases induced by a 

coupled shear and confining stress increases 
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